01 - POTENCIAÇÃO E RADICAIS
POTENCIAÇÃO
Potência é um produto de fatores iguais.
aⁿ = a .a . a.....................a (n fatores)
O número real a é chamado de base e o número natural n é chamado de expoente da potência.
Exemplos
a) 2⁴ = 2 . 2 . 2 .2 = 16
b) (-7)² = (-7) . (-7) = +49
c) (-2)³ = (-2) . (-2) . (-2) = -8
d) (1/2)² = (1/2) . (1/2) = ¼
CASOS PARTICULARES
1) Toda potência de expoente 1 é igual à base.
a¹ = a
exemplo: (-3)¹ = -3
2) Toda potência de espoente zero é igual a 1.
a⁰ = 1
exemplo: (-5)⁰ = 1
3) Toda potência de expoente negativo é igual ao inverso da potência de expoente positivo.
a⁻ⁿ = 1/aⁿ (a≠0 e n inteiro)
exemplo: 2⁻³ = 1/2³ = 1/8
EXERCÍCIOS
1) Calcule
a) 7² = (R:49)
b) 4² = (R: 16)
c) 2⁵ = (R: 32)
d) 8¹ = (R: 8)
e) 9⁰ = (R: 1)
f) (-9)² = (R: 81)
g) (-5)³ = (R: -125)
h) (-1)⁷ = (R: -1)
i) (-15)¹ = (R: -15)
j) (-10)⁰ = (R: 1)
k) (+3)⁴ = (R: 81)
l) (-1)⁵⁶ = (R: 1)
m) (-10)⁵ = (R: -100000)
2) Calcule:
a) 2⁵ = (R: 32)
b) (-2)⁵ = (R: -32)
c) -2⁵ = (R: -32)
d) 2⁴ = (R: 16)
e) (-2)⁴ = (R: 16)
f) -2⁴ = (R: -16)
g) –(-3)⁴ = (R: -81)
h) –(-5)³ = (R: 125)
i) –(+2)⁶ = (R: -64)
3) Calcule:
a) (3/2)² = (R: 9/4)
b) (-1/2)⁴ = (R: 1/16)
c) (-1/3)³ = (R: (-1/27))
d) (-4/5)⁰ = (R: 1)
e) (-5/9)¹ = (R: (-5/9))
f) (+7/8)¹ = (R: 7/8)
g) (-1/2)⁵ = (R: (-1/32))
h) (-4/3)² = (R: 16/9)
4)Calcule:
a) 7⁻² = (R: 1/49)
b) 5⁻³ = (R: 1/125)
c) 2⁻⁴ = (R: 1/16)
d) 2⁻⁵ = (R: 1/32)
e) (-3)⁻² = (R: 1/9)
f) –(-3)⁻² = (R: (-1/9))
5)Calcule:
a) (3/2)⁻² = (R: 4/9)
b) (1/2)⁻³ = (R: 8)
c) (2/3)⁻² = (R: 9/4)
d) (-1/4)⁻² = (R: 16)
e) (5/2)⁻³ = (R: 8/125)
f) (-1/2)⁻⁴ = (R: 16)
6 Calcule:
a) (-4)² - 3 = (R: 13)
b) 1 + (-2)³ = (R: -7)
c) -2 + (-5)² = (R: 23)
d) 15 + (-1)⁷ -2 = (R: 12)
e) (-2)² + (-3)³ +1 = (R: -22)
f) (-9)² -2 –(-3) -6 = (R: 76)
g) (-2) . (-7) + (-3)² = (R: 23)
h) (-1)³ + 3 + (-2) . (-5) = (R: 12)
7) Calcule o valor das expressões:
a) (-4/3)² - 1 = (R: 7/9)
b) 3/2 + (-1/2)² -8 = (R: (-25/4))
a) (1 - ½)² + (-1 + ½)³ = (R: 1/8)
b) (1 + ½)² - ¼ = (R: 2)
POTÊNCIA COM MESMA BASE
Para facilitar as operações entre potencias, emprega-se as seguintes propriedades:
1) aⁿ . aⁿ = aⁿ ⁺ ⁿ
exemplo: 2³ . 2⁸ = 2¹¹
2) aⁿ : aⁿ = aⁿ ⁻ ⁿ
exemplo: 3¹⁰ : 3² = 3⁸
3) (aⁿ)ⁿ = aⁿ ˙ ⁿ
exemplo: (7³)⁴ = 7³ ˙ ⁴ = 7¹²
4) (a . b )ⁿ = aⁿ . bⁿ
exemplo (5 . 3)² = 5². 3²
EXERCÍCIOS
1) Classifique como verdadeiro ou falso:
a) 5⁷ . 5² = 5⁹ (v)
b) 3⁹ : 3⁴ = 3⁵ (v)
c) 8⁵ : 8⁻³ = 8² (f)
d) 7⁵ – 7³ = 7² (f)
e) 7⁶⁻⁵ = 7⁶ / 7⁵ (v)
f) (7³)² = 7⁵ (f)
g) ( 5 + 2 )² = 5² + 2² (f)
h) 3² + 3³ + 3⁵ = 3¹⁰ (f)
2) Simplifique, aplicando a propriedades de potência:
a) (3 . 7)⁵ . ( 3 .7 )² = (R: 3⁷ . 7⁷)
b) (5xy²) . (2x²y³) = (R: 10x³y⁵)
c) ( a² . b)² . (a . b)³ = (R: a⁷ . b⁵)
d) (7xy²)² . (x³y²)⁴ = (R: 49x¹⁴y¹²)
3) Calcule:
a) (-3)² + 6² = (R: 45)
b) 3² + (-5)² = (R: 34)
c) (-2)³ - (-1)³ = (R: -7)
d) 5² - 3⁴ - (-1)⁹ = (R: -55)
e) (-10)² - (-3) = (R: 103)
f) 5 . (-3)² + 1 - 6⁰ = (R: 45)
g) 4 . (-1) . (-3)² = (R: -36)
h) -4 . 6 . (-1)⁷ = (R: 24)
i) (-7)² - 4 . 2 . (-2) = (R: 65)
j) (-6)² - 4 . (-3) . (-3) = (R: 0)
RADICAIS
Sabemos que:
a) √25 = 5 porque 5² = 25
b) ³√8 = 2 porque 2³ = 8
c) ⁴√16 = 2 porque 2⁴ = 16
Sendo a e b numeros reais positivos e n um número inteiro maior que 1 temos por definição que:
ⁿ√a = b -- bⁿ = a
lembramos que os elementos de ⁿ√a = b são assim denominados
√ = sinal do radical
n = índice do radical
a = radicando
b = raiz
nota:
Quando o índice é 2 , usualmente não se escreve.
Exemplos :
a) ²√9 = √9
b) ²√15 = √15
ÍNDICE PAR
Se n é para, todo número real positivo tem duas raízes.
Veja:
(-7)² = 49
(+7)² = 49
sendo assim √49 = 7 ou -7
Como o resultado de uma operação deve ser único vamos convencionar que:
√49 = 7
-√49 = -7
exemplos
a) √25 = 5
b) -√25 = -5
c) ⁴√16 = 2
d) -⁴√16 = -2
NOTA: não existe raiz de um número negativo se o índice do radical for para.
Veja:
a) √-9 = nenhum real porque (nenhum real)² = -9
b) √-16 = nenhum real porque (nenhum real)² = -16
ÍNDICE ÍMPAR
Se n é ímpar ], cada número real tem apenas uma única raiz
Exemplos:
a) ³√8 = 2 porque 2³ = 8
b) ³√-8 = -2 porque (-2)³ = -8
c) ⁵√1 = 1 porque 1⁵ = 1
d) ⁵√-1 = -1 porque (-1)⁵ = -1
Radicando positivo a raiz é positiva
Radicando negativo e índice ímpar a raiz é negativa
EXERCÍCIOS
1) Determine as raízes:
a) √49 = (R: 7)
b) √100 = (R: 10)
c) √0 = (R: 0)
d) ³√8 = (R: 2)
e) ³√-8 = (R: -2)
f) ³√125 = (R: 5)
g) ³√-14 = (R: -1)
h) ⁴√1 = (R: 1)
i) ⁴√16 = (R: 2)
j) ³√1000 = (R: -10)
k) ⁴√81 = (R: 3)
l) ⁵√0 = (R: 0)
m) ⁵√-32 = (R: -2)
n) ⁶√64 = (R: 2)
o) ⁷√-1 = (R: -1)
2) Calcule
a) √25 = (R: 5)
b) -√25 = (R: -5)
c) √-25 = não existe
d) -√-25 = não existe
e) ⁴√81 = (R: 3)
f) ⁴√-81 = não existe
g) -⁴√81 = (R: -3)
h) ⁶√1 = (R: 1)
i) -⁶√1 = (R: -1)
j) ⁶√-1 = não existe
3) Calcule:
a) 7 - √25 = (R: 2)b) ⁵√0 + ⁶√1 = (R: 1)
c) ³√0 + ³√-125 = (R: -5)
d) ⁴√81 + ⁵√1 = (R: 4)
e) 4 + ³√ -1 = (R: 3)
f) 5 - ³√-8 = (R: 7)
g) 7. ³√-1 -5 = (R: -12)
h) 2.√49 -3.√1 = (R: 11)
3) Calcule:
a) (7 + √25 ) / 4 = (R: 3)
b) (7 - √25 ) / 4 = (R: ½ )
c) (-6 + √100) / 2 = (R: 2)
d) (-6 - √100) / 2 = (R: -8)
e) (√36 + 2.√9) / 3 = (R: 4)
POTENCIAÇÃO COM EXPOENTE FRACIONÁRIO
Se 3 é um número real positivo e 2/4 é um número racional, com 2 e 4 inteiros definimos:
Exemplos
a) 2²⁾⁴ = ⁴√2²
b) 5³⁾⁴ = ⁴√5³
c) 7¹⁾² = √7
EXERCÍCIOS
1) Escreva em forma de potência com expoente fracionário:
a) ³√7² = (R: 7²⁾³)
b) ⁵√a³ = (R: a³⁾⁵)
c) √10 = (R: 10¹⁾²)
d) ⁴√a³ = (R: a³⁾⁴)
e) √x⁵ = (R: x ⁵⁾²)
f) ³√m = (R: m¹⁾³ )
2) Escreva em forma de radical:
a) 5³⁾⁴ = (R: ⁴√5³)
b) 5¹⁾² = (R: √5)
c) a²⁾⁵ = (R: ⁵√a² )d) a¹⁾³ = (R: ³√a)
e) 2⁶⁾⁷ = (R: ⁷√2⁶)
f) 6¹⁾² = (R: √6)
PROPRIEDADES DOS RADICAIS
Para os radicais de radicandos positivos valem as seguintes propriedades:
1º Propriedade:
1) √49 = √7² = 7
2) ³√125 = ³√5³ = 5
Exemplos
a) √3² =3
b) ³√5³ = 5
c) ⁴√10⁴ = 10
2º Propriedade:
1) √4.25 = √100 = 10
2) √4 . √25 = 2 . 5 = 10
Comparando 1 e 2, temos √4.25 = √4 . √25
Exemplos
a) √2.7 = √2 . √7
b) √8.x = √8 . √x
c) ³√5.a = ³√5 . ³√a
d) ⁴√5.7.9 = ⁴√5 . ⁴√7 . ⁴√9
EXERCÍCIOS
1) Aplique a 1º propriedade:
a) √8² = (R: 8)
b) ³√7³ = (R: 7)
c) ⁵√x⁵ = (R: x )
d) √(7a)² = (R: 7a)
e) ³√(5x)³ = (R: 5x)
f) ⁴√(7x)⁴ = (R: 7x)
g) √(a²m)² = (R: a²m)
h) √(a + 3)² = (R: a + 3)
2) Aplique a 2º propriedade:
a) √5 .7 = (R: √5 . √7)
b) ³√2.8 = (R: ³√2 . ³√8)
c) ³√5X = (R: ³√5 . ³√X)
d) √10xy = (R: √10 . √x . √y)
e) √5x²m = (R: √5 . √x² .√m )
3º) Propriedade
Exemplos
1) √4/25 = 2/5
2) √4/√25 = 2/5
SIMPLIFICAÇÃO DE RADICAIS
Simplificar um radical significa escrevê-lo sob a forma mais simplis e equivalentes ao radical dado
1º) CASO: O índice e o expoente do radicando são divisíveis por um mesmo número (diferente de zero)
Exemplos
a) ¹²√3¹⁰ = ¹²⁾²√3¹⁰⁾² = ⁶√3⁵
b) ⁹√7¹² = ⁹⁾³√7¹²⁾³ = ³√7⁴
Conclusão:
Um radical não se altera quando o expoente do radicando e o índice do radical são divididos pelo mesmo número.
EXERCÍCIOS
1) Simplifique os radicais :
a) ⁴√5⁶ = (R: √5²)b) ⁸√7⁶ = (R: ⁴√7³)
c) ⁶√3⁹ = (R: √3³)
d) ¹⁰√8¹² = (R: ⁵√8⁶)
e) ¹²√5⁹ = (R: ⁴√5³)
f) ⁶√x¹⁰ = (R: ³√x⁵)
g) ¹⁰√a⁶ = (R: ⁵√a³)
h) ¹⁵√m¹⁰ = (R: ³√m²)i) ¹⁰√x⁵ = (R: √x )j) ⁸√a⁴ = (R: √a)
2º CASO : O expoente do radical é um múltiplo do índice.
O radicando pode ser colocado Dora do radical com um expoente igual ao quociente do expoente anterior pelo índice.
Exemplos
a) √7¹⁰ = 7⁵ (Dividimos 10 por 2)
b) ³√7¹² = 7⁴ (Dividimos 12 por 3)
c) ⁴√7²⁰ = 7⁵ (Dividimos 20 por 4)
d) √a⁶ = a³ ( Dividimos 6 por 2)
EXERCÍCIOS
1) Simplifique os radicais:
a) √7⁸ = (R: 7⁴)
b) ³√5⁹ = (R: 5³)
c) ⁴√7¹² = (R: 7³)
d) ⁵√9¹⁵ = (R: 9³)
e) ³√3¹⁵ = (R: 3⁵)
f) ⁴√6⁸ = (R: 6²)
g) √9²⁰ = (R: 9¹⁰)
h) √x² = (R: x)
i) √x⁴ = (R: x²)
j) √a⁶ = (R: a³)
3º CASO: O expoente do radicando é maior do que o índice
Decompomos o radicando em fatores de modo que um dos fatores tenha expoente múltiplo do índice
Exemplos:
a) √x¹¹ = √x¹⁰. √x = x⁵.√x
b) ⁴√a⁷ = ⁴√a⁴. ⁴√a³ = a. ⁴√a³
EXERCÍCIOS
1) Simplifique os radicais
a) √a⁷ = (R: a³.√a)
b) ³√m⁷ = (R: m².³√m)
c) ⁴√m⁷ = (R: m.⁴√m³)
d) ⁵√x⁶ = (R: x.⁵√x)
e) ⁷√a⁹ = (R: a ⁷√a²)
f) √7⁵ = (R: 7².√7 ou 49√7)
g) √2⁹ = (R: 2⁴.√2 ou 16√2)
h) ³√5¹⁰ = (R: 5³.³√5 ou 125.³√5)
i) ⁴√7⁹ = (R: 7².⁴√7 ou 49.⁴√7)
j) ⁵√6⁸ = (R: 6.⁵√6³ ou 6.⁵√216)
2) Fatore o radicando e simplifique os radicais:
a) √8 = (R: 2√2)
b) √27 = (R: 3√3)
c) ³√81 = (R: 3.³√3)
d) ⁴√32 = (R: 2.⁴√2)
e) √50 = (R: 5√2)
f) √80 = (R: 4√5)
g) √12 = (R: 2√3)
h) √18 = (R: 3√2)
i) √50 = (R: 5√2)
j) √8 = (R: 2√2)
k) √72 = (R: 6√2)
l) √75 = (R: 5√3)
m) √98 = (R: 7√2)
n) √99 = (R: 3√11)
o) √200 = (R: 10√2)
3) Calcule
a) √36 - √49 = (R: -1)
b) ³√8 + √64 = (R: 10)
c) -√100 - ³√64 = (R: -14)
d) -³√125 - ³√-1 = (R: -4)
e) ⁵√1 + √9 - ³√8 = (R: 2)
f) √100 +⁵√-32 + ⁶√0 = (R: 8)
g) ⁴√16 + ⁷√1 - ⁵√-1 = (R: 4)
OPERAÇÕES COM RADICAIS
RADICAIS SEMELHANTES
Radicais semelhantes são os que têm o mesmo índice e o mesmo radicando
Exemplos de radicais semelhantes
a) 7√5 e -2√5
b) 5³√2 e 4³√2
Exemplos de radicais não semelhantes
a) 5√6 e 2√3
b) 4³√7 e 5√7
ADIÇÃO E SUBTRAÇÃO
1º CASO : Os radicais não são semelhantes
Devemos proceder do seguinte modo:
a) Extrair as raízes (exatas ou aproximadas)
b) Somar ou subtrair os resultados
Exemplos
1) √16 + √9 = 4 + 3 = 7
2) √49 - √25 = 7 – 5 = 2
3) √2 + √3 = 1,41 + 1,73 = 3,14
Neste último exemplo, o resultado obtido é aproximado, pois √2 e √3 são números irracionais (representação decimal infinita e não periódica)
EXERCÍCIOS
1) Calcule
a) √9 + √4 = (R: 5)
b) √25 - √16 = (R: 1)
c) √49 + √16 = (R: 11)
d) √100 - √36 = (R: 4)
e) √4 - √1 = (R: 1)
f) √25 - ³√8 = (R: 3)
g) ³√27 + ⁴√16 = (R: 5)
h) ³√125 - ³√8 = (R: 3)
i) √25 - √4 + √16 = (R: 7)
j) √49 + √25 - ³√64 = (R: 8)
2º CASO: Os radicais são semelhantes.
Para adicionar ou subtrair radicais semelhantes, procedemos como na redução de termos semelhantes de uma soma algébrica.
Exemplos:
a) 5√2 + 3√2 = (5+3)√2 = 8√2
b) 6³√5 - 2³√5 = (6 – 2) ³√5 = 4³√5
c) 2√7 - 6√7 + √7 = (2 – 6 +1) √7 = -3√7
EXERCÍCIOS
1) Efetue as adições e subtrações:
a) 2√7 + 3√7 = (R: 5√7)
b) 5√11 - 2√11 = (R: 3√11)
c) 8√3 - 10√3 = (R: -2√3)
d) ⁴√5 + 2⁴√5 = (R: 3⁴√5)
e) 4³√5 - 6³√5 = (R: -2³√5)
f) √7 + √7 = (R: 2√7)
g) √10 + √10 = (R: 2√10)
h) 9√5 + √5 = (R: 10√5)
i) 3.⁵√2 – 8.³√2 = (R: -5.³√2)
j) 8.³√7 – 13.³√7 = (R: -5.³√7)
k) 7√2 - 3√2 +2√2 = (R: 6√2)
l) 5√3 - 2√3 - 6√3 = (R: -3√3)
m) 9√5 - √5 + 2√5 = (R: 10√5)
n) 7√7 - 2√7 - 3√7 = (R: 2√7)
o) 8. ³√6 - ³√6 – 9. ³√6 = (R: -2. ³√6)
p) ⁴√8 + ⁴√8 – 4. ⁴√8 = (R: -2. ⁴√8)
3º CASO: Os radicais tornam-se semelhantes depois de simplificados.
Exemplos
a)5√3 + √12
..5√3 + √2².3
..5√3 + 2√3
..7√3
b)√8 + 10√2 - √50
..√2².√2 +10√2 - √5². √2
..2√2 + 10√2 - 5√2
..7√2
EXERCÍCIOS
1) Simplifique os radicais e efetue as operações:
a) √2 + √32= (R: 5√2)
b) √27 + √3 = (R: 4√3)
c) 3√5 + √20 = (R: 5√5)
d) 2√2 + √8 = (R: 4√2)
e) √27 + 5√3 = ( R: 8√3)
f) 2√7 + √28 = (R: 4√7)
g) √50 - √98 = (R: -2√2)
h) √12 - 6√3 = (R: -4√3)
i) √20 - √45 = (R: -√5)
2) Simplifique os radicais e efetue as operações:
a) √28 - 10√7 = (R: -8√7)
b) 9√2 + 3√50 = (R: 24√2)
c) 6√3 + √75 = (R: 11√3)
d) 2√50 + 6√2 = (R: 16√2)
e) √98 + 5√18 = (R: 22√2)
f) 3√98 - 2√50 = (R: 11√2)
g) 3√8 - 7√50 = (R: -29√2)
h) 2√32 - 5√18 = (R: -7√2)
3) Simplifique os radicais e efetue as operações:
a) √75 - 2√12 + √27 = (R: 4√3)
b) √12 - 9√3 + √75 = (R: -2√3)
c) √98 - √18 - 5√32 = (R: -16√2)
d) 5√180 + √245 - 17√5 = (R: 20√5)
MULTIPLICAÇÃO E DIVISÃO
1º Caso: Os radicais têm o mesmo índice
Efetuamos a operação entre os radicandos
Exemplos:
a) √5 . √7 = √35
b) 4√2 . 5√3 = 20√6
c) ⁴√10 : ⁴√2 = ⁴√5
d) 15√6 : 3√2 = 5√3
2º Caso: Os radicais não têm o mesmo índice
Inicialmente devemos reduzi-los ao mesmo índice
Exemplos
a) ³√2 . √5 = ⁶√2² . ⁶√5³ = ⁶√4 . ⁶√125 = ⁶√500
b)⁵√7 : √3 = ¹⁰√7² : ¹⁰√3⁵ = ¹⁰√49/243
EXERCÍCIOS
1) Efetue as multiplicações e divisões:
a) √2 . √7 = (R: √14)
b) ³√5 . ³√10 = (R: ³√50)
c) ⁴√6 . ⁴√2 = (R: ⁴√12)
d) √15 . √2 = (R: √30)
e) ³√7 . ³√4 = (R: ³√28)
f) √15 : √3 = (R: √5)
g) ³√20 : ³√2 = (R: ³√10)
h) ⁴√15 : ⁴√5 = (R: ⁴√3)
i) √40 : √8 = (R: √5)
j) ³√30 : ³√10 = (R: ³√3)
2) Multiplique os radicais e simplifique o produto obtido:
a) √2 . √18 = (R: 6)
b) √32 . √2 = (R: 8)
c) ⁵√8 . ⁵√4 = (R: 2)
d) ³√49 . ³√7 = (R: 7)
e) ³√4 . ³√2 = (R: 2)
f) √3 . √12 = (R: 6)
g) √3 . √75 = (R: 15)
h) √2 . √3 . √6 = (R: 6)
3) Efetue as multiplicações e divisões:
a) 2√3 . 5√7 = (R: 10√21)
b) 3√7 . 2√5 = (R: 6√35)
c) 2. ³√3 . 3. ³√3 = (R: 6. ³√15)
d) 5.√3 . √7 = (R: 5√21)
e) 12. ⁴√25 : 2. ⁴√5 = (R: 6. ⁴√5)
f) 18. ³√14 : 6. ³√7 = (R: 3. ³√2)
g) 10.√8 : 2√2 = (R: 5√4)
94 Comments:
nossa esse site é muito bom,consegui tirar 8,05 na prova de matematica.......adorooo...parabéns pra quem fez
a resposta do primeiro exercício da primeira potência está incorreta:
(3/2)² = 9/16
a resposta certa é 9/4.
não tem o que eu quero
obrigada me ajudou
Nossa muito 10 esse site,é grande a explicação mais ajuda bastante ! valeu!
nossa aqui nesse sati explica melhordo que minha professora
naum tinha o qu eu queria mais me ajudou mto parabéns!!
muito muito bom (: adorei so fanzassa dele UAHEUHAE' é bom pra quem não sai do pc nunca.
Parabéns gostei muito
continuei assim nota 10
Adorei só coloca mais exemplos por favor obrigado!
aqui é o rafael moro na cidade de rosário do sul/rs vou tentear estudar pelo caderno se nao conseguir entender vou pedir ajuda a este site
até agora da potencição com radicas me ajudou a estuda bem melhor
até agora da potencição com radicas me ajudou a estuda bem melhor
Vc é mtu Phoda,
sou mtu teu fã
vlw msm pela ajuda¹!!
Quanto é ⁵√-32 ?
adorei me ajudo bastante tirei 30 numa prova de matematica uhu *-*
adorei me ajudo bastante tirei 30 numa prova de matematica uhu *-*
Poxa, muito bom, adorei esse site, me ajudou muito !
gostei mt...tirei mtas questões para meus alunos daqui. Parabénss!!
será q você poderia fazer com parenteses tipo
√2 .(√126 + √56) -√3 .(√84 - √3 + √48)
muito bom ...
porrra cara vc esqueceu da potenciação com fração o imbecil!
Adorei o site. Consegui tirar uma nota muito boa no meu simulado. Valeu mesmo!
isso é uma bosta.
Porque oque eu queria eu ñ achei.
:poop:
Nossa, me ajudou muito!! Obrigadoo!!!
Gente me ajudou bastante esse site mmas mesmo assim nao entendon algumas coisas,#burrakkk,o site é otimo msm mais eu que sou burra mesmo,mas mesmo aasim eu tirei 87 em uma prova q valia 100,e devo a minha nota para esse site!!!;)
goei muito obrigado
Me ajudou a entender melhor como funciona a potencia e radicalização
Adorei o site, explica bem e oferece otimos exemplos de calculo, enfim, otimo mesmo!!!!
a pessoa que fez o site é analfabeto, como que escreve SIMPLES com I ? kkkkkk, BURROOOOO ! Porém, temos que afirmar que a explicação foi muito boa, apesar de tudo :)
rais de 24 56 elevado a 4 ??????????????????????????????????????????
muito bom mesmo esse site
e o site e muito bom mesmo, mais naum tem o q eu quero!
muito esses exercicios, me ajuda demais no meu trabalho como professora.
Hey! I simply would like to give a huge thumbs up for the nice information you could have right here on this post.
I might be coming back to your weblog for extra soon.
My web page :: showcase cinema walsall times prices
Muito Bom Esse Site Consegui Estudar Para A Prova !!! obrigadaaaaaa!!!!!! :)
Hey! I simply would like to give a huge thumbs up for the nice information you could have right here on this post.
I might be coming back to your weblog for extra soon. yessss
kkkkkkkkkkkkkk
burrrrro
Mosso tá tudo errado....Nao entendi nada...........HeHe :-P
várias respostas estão incorretas, e são coisas ridiculas tipo raiz quarta de 5 elevado a sexta é 5????? ah meu até meu pé sabe que não.
Que educacao a risca hem?
precisava estudar esse assunto para a minha prova...graças a esse site aprendi sobre potenciação e radicais.muito obigada
precisava estudar esse assunto para a minha prova...graças a esse site aprendi sobre potenciação e radicais.muito obigada
Grande merda esse site ! esse tipo de materia foi ate explicado muito bem, mais sei la ...
tem como fazer com parenteses ?
não me ajudou muito não :( ainda não entendo isso!.
não tinha oq eu queria, mais pelo visto o site é bom!
não tinha oq eu queria, mais pelo visto o site é bom!
não tinha oq eu queria, mais pelo visto o site é bom!
não tinha oq eu queria, mais pelo visto o site é bom!
não tinha oq eu queria, mais pelo visto o site é bom!
Ajudou um pouco,mas eu queria resolver a seguinte questão :5,7 x 10-²²
o que tem aqui, tem em um livro de matemática da minha professora ..
gostei muito desse site me ajudou um pouco mais
qual e a resposta de 0,666...
2
me ajudou muito mas eu qeria saber como simplificar usando o mmc , porqe depois do mmc eu me perco na coonttah -a raiz12+6raiz3 =
muito bom espero que me ajude amanha na prova de matemática
Não gostei muito tem muita coisa mas quase não explica nada e para quem quer aprender mais um conselho n leia em sites assista vídeo aulas é bem mais gratificante o resultado no final
não encontrei o que eu queria
nossa consegui recuperar minha nota pois fiquei de recuperação ainda recuperei com 9.0 um pouco com sorte mas eu consegui
eu achei ruim pq e mt exercicio
Me encanta este sitio, ya que me ayudó mucho ... lol.
tengo voy a acceder a otras veces aquí.
gracias por ayudarme. un beso.
Nunca acho o que eu quero nesse site
Muito bom me ajudou muito para a prova.
ameiiiiiiiiiiiii
mt bom me salvou para a prova !!!!
-2
Gostri vou aprender muito
Bom!!👍
to jogando mine e to aprendendo mais que isso!!!!!!!!!
wtf?! c) (-2)³ - (-1)³ = (R: -7) tem certeza que é -7?
3√7-⁴√49 Alguém ajuda por favor
Gostei!!!!!!!!!!! Me ajudou muitoooooooo!!!!!!
Gostei muito parabéns quem criou o site
mim ajudou bastante no exercício
adore, muito bom mesmo
Moço, você pode não ter achado o que queria mas esse site ajudou a muitos então não o chame de bosta ��
essa bosta tirei 0
Muito bom esse site pena que só achei agora e minha prova é amanhã,pretendo tirar pelo menos um 5 estava com muitaaaa dificuldade nessa matéria porém o site me ajudou mais claro que um dia não faz milagre vai chegar a hora e eu vou esquecer tudo que li e ja fiz.mesmo assim site nota dez.
Eu também
Eu também
Muito bom esse site pena que só achei agora e minha prova é amanhã,pretendo tirar pelo menos um 5 estava com muitaaaa dificuldade nessa matéria porém o site me ajudou mais claro que um dia não faz milagre vai chegar a hora e eu vou esquecer tudo que li e ja fiz.mesmo assim site nota dez.
E bom mais devia ser mais explicativo nas conta por que só botando a resposta e não explica como chegou aquele resultado fica um pouco difícil para apreende.Eu achou é minha opinião
E bom mais devia ser mais explicativo nas conta por que só botando a resposta e não explica como chegou aquele resultado fica um pouco difícil para apreende.Eu achou é minha opinião
1) Simplifique os radicais :
a) ⁴√5⁶ = (R: √5²)
Errado! não é 5^(2) e sim 5^(3)
Pq como você pode perceber ele dividiu 4 por 2 ou seja o 6 precisa ser dividido por 2 tbm!
Corrijam Pq pode atrapalhar algumas pessoas!
Site Muito Bom..Eu não precisava mais meu colega entendeu muito bem!
Parabéns !
3) Efetue as multiplicações e divisões:
c) 2. ³√3 . 3. ³√3 = (R: 6. ³√15) Errada Pq 2 . 3 sim é 6.. mais raiz de 3 . raiz de 3 é igual a raiz de 9 não de 15 '-
Tenham Mais Cuidado...
Esses Erros Básicos Do Site Pode Prejudicar Alguém!
4√121.4√121
Tem raiz de 128? Quero saber
Vc tá precisando de uma aula de português , e não de matemática
OI,gente tem um exercício da explicação dos índices par e impar no nº1 na letra j que é assim(³v100) e a resposta era -10.Sendo que na esplicaçao dizia que o índices impar e o radicando impar ,a resposta seria negativa,sendo que o radicando esta sem sinal, ou seja, o radicando esta sendo positivo.Então resposta seria só 10. Alguém pode me dizer se eu estou certa ou eu não prestei atenção em alguma coisa.
Nossa esse site me ajudou demais obrigado valeu...
Vc é professor de português?
Obrigada,ajudou muito
Postar um comentário
<< Home